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ABSTRACT

The renewed interest in safety i<sues for large scale industrial
devices and in high speed combustion has driven recent intense ef-
forts to gain a deeper theoretical understanding of detonation wave
dynamics. Linear siability analyses, weakly nonlinear bifurcation
calculations as well as full scale multi-dimensional direct numerical
simulations have been pursued for a standard model problem based
on the reactive Euler equations for an ideal gas with constant spe-
cific heat cape “ities and simplified chemical reaction models. Most
of these studies are concerned with overdriven detonations. This is
true despite the fact that the majority of all detonations observed
in nature are running at speeds close to the Chapman-Jouguet (CJ)
limit value. By focusing on overdriven waves one removes an array
of difficulties from the analysis that is associated with the sonic flow
conditions in the wake of a CJ-detonation. In particular, the proper
formulation of downstream boundary conditions in the CJ.case is a
yet unsolved analytical problem.

A proper treatment of perturbations in the back of a Chapman.
Jouguet detonation has to account for two distinct weakly nonlinear
effects in the forward acoustic wave component. The first is a non-
linear interaction of highly temperature sensitive chemistry with the
forward acoustic wave component in a transonic boundary layer near
the end of the reaction zone. The second is a cumulative three.wave-
resonance in the sense of Majda et al. which is active in the near-sonic



burnt gas flow and which is essentially independent of the details of
the chemical model. In this work, we consider detonations in mix-
tur.s with moderate state sensitivity of the chemical reactions (ro
large activation energy). Then, the acoustic perturbations do not
influence the chemistry at the order considered and we may concen-
trate on the second effect; the three-wave resonance.

1. Introduction

The theory of detonation waves has recently regained much atten.
tion in connection with safety issues in large scale industrial devices,
(Shepherd (1985), Breitung (1991)), or the storage of condensed
phase explosives and also in connection with the problem of efficient
controlled high Mach number combustion in high speed airplane en.
gines (Shepherd (1992)). The goal is to improve the understanding
of detonation wave stability and to design efficient numerical tools
for direct simulations based on detailed physical insight. In both
these problem areas, detonation stability (Erpenbeck (1962, 63, 64),
Lee and Stewart (1991)) and direct numerical simulations (Oran and
Boris (1987), Fujiwara aad Reddy (1989), Schoeffel (1989), Bourlioux
(1991) and Bourlioux and Majda (1992)), the formulation of down.
stream, i.e., burnt gas side, boundary conditions is crucial for an
accurate representation of the phenomena. The standard approach
is to suppress the forward acoustic mode at the downstream bound-
ary so as to mimic a combustion wave that is evolving without any
perturbations being imposed from outside, (Lee and Stewart (1990)).
We will refer to this approach below as the "standard radiation con-
dition”. Here and below the expression “forward” labels acoustic
perturbations facing in the direction of propagation of the detonation
in the laboratory frame. In the present setting, for a wavc running
from right to left, this means that forward acoustic characteristics
travel at speed (82/8t)" = u — ¢, where u and ¢ are the local flow
velocity and the speed of sound, respectively.

The physically most interesting class of detonations is that of
near-Chapman-Jouguet(CJ) waves, for which an acoustic decoupling
between the detonation wave structure and the burnt gas flow oc.
curs. In section 2 we briefly summarize for convenience the ZND
detonation theory following Fickett and Davis (1978). In section
3 we show that in the CJ.regime there is a generation of nonsero
forward acoustic perturbations in the burnt gases through weakly



nonlinear three-wave resonance of the type first discussed in a dif-
ferent context by Majda and Rosales (1984), Majda et al. (1988).
Thus, even if no forwaid-acoustic perturbations are present at some
initial time in the burnt gas region, they are generated automatically
through interactions of backward traveling perturbations that emerge
from the detonation structure as time evolves. This observation ob.
viously questions the standard radiation condition, since the latter is
equivalent to suppressing the forward acoustic mode in the farfield.
Qur goal in this paper is to resolve this apparent contradiction using
methods of asymptotic analysis.

To see what is involved, one needs to compare two characteris-
tic length scales. One is the distance behind the lead shock of the
detonation where numerical boundary conditions are imposed. The
second is the length scale for the three-wave resonance phenomena
mentioned above. Let ¢ be the small perturbation amplitude used as
an expansion parameter. (Later on we consider € to be the growth
rate of the most unstable Eigenmode of a marginally stable detona-
tion.) Figure 1 shows a sketch of the spatial distribution of a rep-
resentative reaction progress variable, (1 ~ A), in 8 ZND-detonation,
where the unburnt gas is approaching from the left and the lead shock
is located at z = 0. At the lead shock there is pure unburnt gas so
that (1-A) =1, and as z —+ o0 and (1 - A) — 0, we approach the
burnt gas region.

Numerical linear stability codes, (Lee and Stewart (1990)), re-
solve a region 0 < 2 < 2z /N, where z;/y is the location where
(1 -A)=1/N and N is the number of grid points in the discretized
linear perturbation equations. Notice that

zyyn=0(1) a ¢-+0, (1.1)

i.e., in terms of the perturbation amplitude the downstream bound.
ary condition is imposed at a finite distance. In contrast , the three-
wave resonance occurs at distances

z = 0(1/e?). (1.2)

The key question is what will become of the forward acoustic pertur-
bations generated at these large distances as they move up to the det.
onation structure and finally arrive at the position 2,,y where they
would influence the numerical downstream boundary conditions.
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Fig. 1: Spatial distribution of the reaction progress variable in a CJ-
ZND detonation and identification of several asymptotic layers.

One may answer this question by using the method of matched
asymptotic expansions: Simplified asymptotic descriptions of the ro-
lution in four distinct regions have to be matched. There is 2 main
rcaction Jayer where (1 — A) = O(1), an intermediate transonic layer
where (1 - A) = O(¢), a burnout layer where (1 — A) = O(e?), and
the burnt gas region where (1 — A) < 2. The acoustic resonances
are dominant in the latter two regions and the present paper focuses
on their analysis, The principal facts relevant for the formulation
of downstream beundary conditions are readily demonstrated in this
paper through a combination of formal asymptotic arguments and
numerical solutions of the burnout layer equations. We leave detailed
numerical studies of the burnt gas resonance effects, the tedious cal-
culations for the transonic region and the final matching to the main
reaction layer for a later publication, (Bdzil and Klein (1993)).

Section 3 of this paper discusses the burnt gas region, z -= 0(1/€?),
where the chemical activity is negligible. We summarize the equa-
tions for weakly nonlinear three-wave resonance and define a model
problem suited to exhibit the generation of forward acoustic pertur-
bations. It turns out, however, that on the time scales considered the



perturbations near the end of the reaction zone, e.g., at z;,§ from
(1.1), are related directly to the asymptotic solutions in the burnout
layer. There the chemical source terms appear at order O(e?) and
modify the acoustic resonance equations. Thus we concentrate on
this region in section 4 and develop formal solutions based on the
method of cha.acteristics as well as numerical solutions including
shock discontinuities. The main influence of the chemical source
terms is to continously accelerate and amplify the forward acous-
tic nerturbations and to establish a reaction tail that matches into
the unperturbed CJ-ZND structure. Both the formal characteristic
solution and the numerical solutions show the expected behavior -
an energy transfer from the backward acoustic mode into forward
acoustic perturbations. Both approaches predict that the effects of
weakly nonlinear acoustic resonance decay as the forward character-
istics move upstream into the transonic region.

This tendency is approved in Bdzil and Klein (1993) where we
show that the resonance effects are down to order O(e?) at finite
distances where numerical boundary conditions are imposed and we
conclude that:

The standard radiation condition imposed at some finite distance
21/ behind the lead shock is valid even for Chapman-Jouguet
detonations.

Our approach is the first to use rational asymptotic methods to re-
solve the boundary difficulties that arice in the stahility problem for
plane CJ-detonation. Our success at resolving the boundary con-
dition difficulties that have been a part of linear stability analyses
of detonation since Erpenbeck (1962), (1963), (1964), suggests this
same approach for other problems; notably the confusing "square
wave” detonation stability problem and the problem of oblique det-
onation stability in the CJ.like critical regime.



2. The ZND Detonat.on Model

We analyse tie dynzmics of fast combustion waves in the frame.
work of a standard mc ‘el for gaseous detonations. A plane ZND.
detonation {sce Fickett and Davis (1979)) consists of a leading invis-
cid shock wez and a sihsequent zone of chemical activity. The lead
shock heats 1p and compresses the gas so that exothermal chemical
reactions are turned on. The chemical energy is converted into ther-
mal and kir+tic energy thereby overcoming all or part of the dissipa-
tion in the jead shock. For a given combustible there is a continous
family of ZND detona’ions parametrized by the detonation speed,
D. The so called Chapman-Jouguet detonations are those with the
smallest poscible spe>d D = D¢;. The main characteristic feature
of a CJ-d«vonation needed in our analysis is the fact that forward
acoustic perturbations in the burnt gases travel at exactly the same
speed as the detonation itself. In other words, the burnt gases move
away from *he deton:tion structure at (their own) sonic speed. Fig-
ure 2 shows a space-tme diagram for a CJ-detonation traveling from
right to lofi with the unburnt gas at rest in the laboratory frame
of refer-nt. We dis,)lay the path of the leading shock, indicate the
reactioy. i.-ue and exhnibit a family of forward acoustic cho.racteristics.

The ZND detonation structure is described by traveling wave
solutio::: .f the reactive Euler equations

U+ A(U)Us = C(U), (2.1)
where . ¢,t) are laboratory coordinates and
ﬂ—‘— (v»ﬁ»ps A)" (22)

with : the specific volume, 4 the flow velocity in the laboratory
frar~: p ‘he pressure and ) a reaction progress variable satisfying

A: uia the unburnt and A = 1 in the burnt gas. Furthermore
4 -v 0 0
0o a vy O
All) = o 1p 4 0 (2.3)
0 0 0 4
and

Q(u) = (0)0: 1 ; lqrv')" (2.4)
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where « is the isentropic exponent, Q 2 dimensionless chemical heat

of reaction and
r=K(p,v)(1-2A) (2.5)

the reactionrate. For simplicity in the derivations we have a .sumed
an ideal gas with constant specific heats so that 4 = const. The
above equations are supplemented by shock jump conditions at

2=24+Dg;t=0 (2.6)

(see e.g., Fickett and Davis (1979), Lee and Stewart (1990)) and one
seeks traveling wave solutions so that U = U*(z) where z is a front
attached coordinate according to (2.6).

The equations are nondimensionalized using the reference quan-
tities

specific volume : Y,h
pressure : P,y
velocity : Coh = VYPhVan (2.7)
length : half-reaction length I, ),
time : Lyja/can.

The half reaction length is defined as the distance behind the lead
shock where A = 1/2 and the subscript "sh” denotes the post-shock
(von Neumann) conditions.

With this nondimensional representation, the exact solution for
the Chapman-Jouguet — ZND detonation structure can be written
in terms of the reaction progress variable, A = A*(z), as, (Lee and
Stewart (1990)),

PPo= a4 (1-at)(1 -2,
v = ﬁﬁ: +1, (2.8)
u*' = 4° 4 D¢y = v My,

where My, = Dg,/c,n and
M’
et = My 1 (2.9)
v+1

Equations (2.8) express the detonation structure solely in terms of
the reaction progress variable A* = A*(z). The spatial distribution
of all quantities follows irom solving the fourth equation in (2.1):

u.A: = f(p.,v.,A.), (2'10)



with u*, v*, p*, r* from (2.8), (2.5) as functions of A\*. We notice, in
particular, that u* — /p*v®* = 0 at (A* = 1), i.e. that the burnt gas
flow is sonic.

3. Weakly Nonlinear Resonant Acoustics in the Farfleld

3.1 The burnt gas region

Consider a marginally stable CJ-detonation that oscillates with a
small slowly varying amplitude in the frame of reference moving with
the unperturbed wave as sketched in Fig. 3. Under CJ-conditions,
one has |ugy| = ¢cy, such that

(w=¢€)os =0, tey+ccs=2ucy = 2¢c,. (3.1)

Entropy perturbations generated by the oscillations of the detonation
speed and by perturbations of the reaction process travel backwards
into the burnt gases at speed (8z/0t) = uc,, while backward acoustic
perturbations travel at (8z/09t) = uc; + €cy = 2uc;. Since these per-
turbations are generated in phase within the detonation structure,
their associated spatial wave lengths in the burnt gas region differ
by exactly a factor of two. From the theory of weakly nonlinear res-
onant acoustics by Majda and Rosales (1984) one knows that this is
the condition for cumulative resonant generation of forward acoustic
perturbations. These are of the same order of magnitude as the back-
ward traveling perturbations and apparently cannot be suppressed.
To be more specific we propose the following model problem that
allows one to give a quantitative description of the resonance and of
its effects near the end of the detonation reaction zone.

A Cl-detonation with a marginally stable structure is perturbed
at timet = 0. In a suitable frame of reference the wave will typically
start tooscillate around its unperturbed position at a frequency given
by the imaginary part, a,, of the Eigenvalue associated with the
most unstable eigenmode. The perturbations of the detonation speed
and of the reaction process generate entropy and backward acoustic
perturbations. These leave the reaction zone and radiate into the
burnt gases. We are interested in the long time behavior of the
radiation field in the back of the wave. We assume the entropy and
backward acoustic perturbations to be given in the form of sinusoidal
oscillations at the edge of the reaction zone; more precisely at some
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Fig. 3: Characteristics in the burnt gas behind a marginally stable
CJl-detonation.



location z = z3 where (1 — A*) = €2 so that for z ~ 23 according
to (2.5) the reaction source terms are negligible up to and including
the second order in £. Then we have to solve the following initial-
boundary value problem up to first order in € for the inert Euler
equations,

U+ AU, =0 (2> 2,t20), (3.2)

with initial conditions
U9,0)=Uc: (2> 2) (3.3)

and boundary conditions at z = z3 for the entropy and backward
acoustic modes given by

lo '!l(za,t;e)
£+ * Q(zih t; E)

Here Uy, is the unperturbed burnt gas state, [, It are the left eigen-
vectors of the matrix A(Uc,) associated with the eigenvalues ug; and
(u + ¢)c; vespectively and A is the same as in (2.3) except that @ is
replaced by u = @& + Dg¢;. (See Appendix A for more details.) Left-
multiplication by [®, [* filters out the entropy and backward acoustic
contributions to the state vectors. Also in (3.4), (3.5) we allow for
slow time variaticns of the amplitude functions S, Wy. This ansatz
is justified in case that the linear growth rate, Re(a), of the most
unstable eigenmode is of order O(e), i.e.,

. Ug, +eSo(et) cos(at) (3.4)
I - Uc, + eWo(et) cos(ast + ¢) . (3.5)

a=calt) 1oy, o) =v(1) (¢-0). (3.6)

This relation specifies our notion of A marginal stability. At this stage
the precise relations between So, Wy and the phase shift ¢ in (3.5)
remain undetermined. For our model problem we let these quantities
be constant and leave the derivation of equations for their long-time
evolution for (Bdzil and Klein (1993)).

Closely following the procedure of Majda and Rosales (1984), we
introduce a multiple scales perturbation ansatz:

U="Uc +€e[Ve + 5%+ Wet]+ 2UP(z,t¢)  (3.7)
where the hyperbolic mode amplitudes depend on (z,t; ¢z, ¢€t), i.e.,

[V,S,W] = [V, 5, W](z2,t;e2,¢t). (3.8)




The right eigenvectors r-,7% ¢t of the matrix A associated with the
eigenvalues u — ¢, u,u + ¢, respectively, are given in Appendix A. At
the leading order in ¢ one finds

Vit(s-¢)esVe = Vi=0
S‘ + uc;S‘ = 0 (3.9)
Wet (vt e)esW, = 0
This gives rise to
V = V(z;ez,et)
S = S(hjez,et) (3.10)
W = W(yezet)

where the fast scale arguments are defined by

z = z—(u~cC)est =2
y = z-—- (u + C)cat (3.‘11)
h = z-ugt= 3z +vy).

They are characteristic coordinates for the forward and backward
acoustic and the entropy mode, respectively.

At the second order one first derives equations analogous tc (3.9)
for the mode amplitudes in U3 but with right hand sides depending
on V,S,W and their derivatives with respect to (€2,¢t). Then, by
requiring U(?) to be bounded even for z,t = O(1/¢), i.e., on the space.
time scales for the action of weakly nonlinear effects, one obtains
secular equations for the evolution of the first order mode amplitudes
V,S,W in the slow scale variables

(=¢ex and T =¢t. (3.12)

These equations are

(Ve + (u=c)esVe) -a[V - W) +(S))Ve = a(SW,)),
($¢ +ucsSe)+ (W -V)Sh = 0,
(Wr + (v + €)esWe) —a[W - 6(V) + (S)IW, = a(SVe)¥),
3.13
where 1 ( )
y o 2 (3.14)
bR}

and (-) and (-)(%), (-)®) are fast variable averaging symbols. In par-
ticular, the superscripts (*) and (V) denote averaging at fixed z and



y, respectively. The precise definitions of the averaging operations
are given in Appendix B.
Next we introduce new slow time scale variables on the charac.

teristic curves by
K a (I iu+c, ) ’
CJ

g : i(’:cj"' (3.15)
ucy

Then 1 measures time along the forward acoustic characteristics
(2,{ = const), £ measures time after the passage through the lead
shock along backward acoustic characteristics {z~ (u+c)c, = const),
and 9 measures time along the particle paths (z — uc, = const). Us-
ing in addition the particle path label

x =€ - ucyr = ¢h, (3.16)
and reorganizing the slow scale dependencies of V, S, W by
V=V(=éy), S=85MhxY), W=W(@yé&n), (3.17)
we find

Va-[V-bW)+(S)Ve = —(SW,)(‘),
Se+ (W —=V)Sy, = 0, (3.18)
We + [W - b(V) + (S)]W, = (SVe)¥.

Applying the fast variable averaging to these equations yields
(Vin=(S)o=(W)=0 (3.19)

s0 that
(V)=(V)€&), (S)=(S)}x), (W):=(W)(n) (3.20)

and these functions are readily determined by the initial-boundary
data. Requiring that there be no forward acoustic perturbation in
the back of the wave at time t = 7 = 0, we have

(V)=0. (3.21)

Then, assuming for our model problem exact CJ conditions in the
burnt gases we may set

(S)x) = 8(x)=0;  (W)(n)=W(n)=0. (3.22)



Notice that these conditions are assumed here, not derived. A com-
plete second order analysu. ‘mcluding the detonation reaction zone
structure would yield loog wne evolution equations for the functions
S(x) and W(n). It is in 1us sense that we are proposing a model
problem here.

With (3.21), (3.22) the entropy equation in (3.16) iecouples from
the acoustic mode equatioxs and we find

Vo -V, —(SW,)(=)

We+ W, = (SVa). (3.23)
The appropriate initial-boradary data for V,W are
V(z;€3) = 0
3.24
W(y:tn) = Wocos(ary), (3-24)
and the entropy mode is explicitly given by
1
S(—z-(z +y)ind = So con(2a,z ; Y+ ®). (3.25)

The system of equations '3.23) through (3.25) readily models the
generation of forward acowstic perturbations in the burnt gases due
to resonant energy iranskr from the backward acoustic mode and
we will describe a study »f mumerical solutions to these equations
in (Bdzil and Klein (199])). In the present paper we are mainly
interested in the influence of these generated forward acoustics on the
perturbations at the end of the reaction zone. From the discussion in
the introduction we recall zhag this means to find the forward acoustic
perturbations at a finite Cstaxnce, z;/y = O(1) as (¢ — 0) behind the
lead shock where (1 - A) = 1 ‘N, N fixed. In the current section the
chemistry was completely aegligible. To obtain the desired result on
the influence of resonance effiects at r == z;/y, we have to match this
burnt gas region to the naix reaction zone, (1 - A) == O(1). This
matching procedure requ-es un analysis of two intermediate layers
distinguished by differen: ‘evels of chemical activity:

There is

i) a burnout layer, where {1 ~ )) == O(¢?) and

ii) a transonic region, wiere (1 - A) = O(e) as (¢ -+ 0).



We analyse the burnout layer in detail in section 4. This analysis
will constitute our principal result that the resonance effects becomer
weaker and weaker as one moves upstream towards the main reaction
zone. A complete analysis of the matching through the transonic
region is tedious but does not lead to new insights and thus we leave
this discussion for a later more comprehensive report, (Bdzil and
Klein (1993)).

4, The Burnout Layer

4.1 Asymptotic behavior of the reaction progress equation

In this subsection we are interested in a region behind the deto-
nation structure where the effects of chemical heat release enter at
the second order and therefore modify the acoustic resonances. To
assess the extent of this region, we first consider the reaction progress
equation (2.1)4,

(1=A)+u(l-A),=~K(p,v)(1-2A). (4.1)

The analysis will provide the correct scaling for the thickness of this
asymptotic layer and will also yield the appropriate expansion scheme
for the reaction progress variable, A.

The general solution to (4.1) using the shock jump condition for
the inert lead shock,

It
o

Q-N)=1 at z= (4.2)

reads

(1-A)=exp (—(“T/O. -I—(%’—'-Q dz) (4.3)

where the integration is along a particle path, m == const, with

ot
Oz "

1
= amnn (44)

With an asymptotic expansion of K(p,v) and u about the ZND pro-
file according to

K(pv) = K("v) + e ((Kp)80) 4 (Kuou) 4+ .

. 4.6
u = uw ey, ., (4.8)



the solution in (4.3) reads

(1-X) = exp (—("i/o' -:%.-dz) exp (—c(")/o. [_15-](1) dz) ... (4.6)

where

(KD =3[ Ko + (K0 4 (4K dz) 20
- (ﬁy [u(‘) + (du"/dz)z(‘)]

and z(}) is the first order perturbation of the particle path, m =
const. Obviously, (4.6) 1nay be written as

(1-2)= (1~ 2)*(1 +0(e)) (4.8)

(4.7)

and we conclude that in any region where (1 - 1) = O(e™) the proper
expansion is

(1-2) = e”A(2) 4 ™Az tiez,et) + ... (4.9)
Furthermore, as (1 — A)* -+ 0, K* -+ K¢;,u* — ug; so that

KOJ

cJ

A(z) = exp(~A(s - 22)  with = (4.10)

and with z, chosen so that (1 - A*)(z,) = €™. As a consequence, in
the burnout layer we have

(1= A) = e exp(~A(z - 1)) (1 + O(c)) (4.11)

and the thickness of the layer is of order In(1/¢). This result deter.
mines the appropriate choice of independent variables for the acoustic
modes in this region as we will explain in the next subsection.

4.2 The influence_of the reaction tail on the acoustic resonance

As for the burnt gas region we emnploy here a multiple scales ex-
pansion for the hyperbolic modes at first order. Before, we nceded to
introduce slow time varables, (n,£,¥) on each of the characteristics.
In contrast, the residence time of entropy and backward acoustic
perturbations in the burnout layer is of order In(1/€) only and this
is insufficient to allow for accumulation of weakly nonlinear sffects.
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Fig. 4: Characteristics and their residence times in the burnout layer.



Only the forward acoustic characteristics have a long enough resi-
dence time in this layer as indicated in Fig. 4. The graph displays
the forward and backward acoustic characteristics and particle paths
and indicates the order of magnitude of the passage times of the re-
spective characteristics through the burnout layer.

The appropriate expansion scheme in the present regime reads

U=Ue +elVe +38°+ Wrt] + 2@z, tie) + A)Y) (4.12)

where

V = ‘.’(é;ﬂ)
§ = -i(%(H:/)m) (4.13)
W = W(yn)
and
d=z-1 (4.14)

with 2; defined in (4.10), (4.11).

For our model problem we have assumed the backward traveling
mode amplitudes Wy, So, the oscillation wave number, a;, and the
phase shift, ¢ in (3.4), (3.5) to be independent of the long time
variable, 5, and so we set explicitly

W = Wocos(aiy + ¥(¢))
$ = Socos(2a.‘(-’—;-ﬂ+¢+¢(c)).

Here y(¢) is an e-dependent phase shift that makes the boundary
data imposed on S, W in the burnt gas region compatible with those
for $,W in the present regime.

The only secular constraint that remains is the long time evolu-
tion equation for V', namely

Vo~ Ve = wA(8)4 (SW,)®
pexp( -Bz) + %a.'SoWo sin(a,2 + ¢ + ¥).
where 4 = ... with Q from (2.4). As initial condition we use the sta-
tionary unperturbed solution corresponding to the CJ-ZND profile,

namely
V(2,0) = V*(2) = \/a—ﬂze'l‘". (4.17)

This is the inviscid Burgers' equation driven by an explicit source
term due to the combined effects of chemical heat relesse and weakly
nonlinear acoustic resonance.

(4.15)

(4.16)



Notice that we merely need to solve these burnout layer equations
in order to obiain the desired information on the influence of acous-
tic resonances on the perturbations in the upstream flow. There is
an obvious physical interpretation of this formal result. On the time
scales considered, t = O(1/¢), forward acoustic perturbations of or-
der O(¢) can travel distances of no more than order O(1) as ¢ — 0.
The forward acoustics generated in the burnt gas region at distances
O(1/¢) downstream from the detonation structure will thus not ar-
rive in time to have any influence. The only perturbations that make
it in time are those generated in the burnout layer. Since the gen-
erating backward traveling mode amplitudes, W, $, are given in this
region directly by their upstream boundary data, (4.15), one only has
to solve the single scalar equastion, (4.16), with inital data, (4.17),
for the evolution of the forward acoustic mode amplitude.

A first straight-forward approach is via the method of charac-
teristics. We construct this formal solution below and in particular
derive the behavior of the solution as 2 -+ —o00, which is needed for
the upstream matching to the transonic region. Knowing that the
characteristic solution is valid only as long as characteristic curves
do not cross, i.e., for shock-free solutions, we present additional nu-
merical solutions of (4.16), (4.17) in section 4.3. These solutions, in
fact, reveal shock formation, but they verify the limit behavior of
the solution for 2 —+ —o0o as derived from the formal characteristic
analysis.

Let m = const denote a characteristic of (4.16), so that

n 1 :
55'-.": -7 with  n(2o(m),m)=0. (4.18)

Without loss of generality we may choose £o(m) = m. Then (4.16}

becomes
10v?
2 0

and the explicit solution in terms of (£,m) is

1
|...= ~pexp(~ft) - saSoWosin(ot + 9 +9),  (4.19]

1/2
V(él m) = {2%‘_“ +S50W, (COI(G.‘Q + ¢+¢)~cog(a‘m_+¢4.¢)] } )

(4.20°
To obtain the solution in terins of (2, 1), one needs to construct the
family of characteristic curves, m == const, by solving (4.18) numer-
ically, using the solution in (4.20). The solution so constructed is



valid as long as neighboring characteristics do not cross. In that
case, shock formation occurs and solution techniques capable of ap-
proximating weak solutions to nonlinear hyperbolic equations have
to be employed as in section 4.3 below.

An expansion of (4.20) as # — —oo reads

V(¢,m)= ‘/%{e‘?’ - }Je%sowo [cos(a.-i +@ + )~ cos(am+ ¢ + 1&)]} +...
as z — —oo.
(4.21)
The terms in square brackets represent the influence of the initial
data and of the acoustic resonance. These are multiplied by an
exponential that decays as £ — —o00. In contiast, the first term,
which corresponds to the background CJ-ZND solution diverges in
this limit. For the matching to the upstream transcnic layer we are
interested in positions 2 where (1 — A) = O(¢). Accordirg to (3.35),
(3.38) this regime corresponds to
1
)
Introducing (4.22) in (4.21) we find

V(z,m) = \/%——{s‘/’e" §e

~ ¢ ‘.E‘ch‘sowo [cos(a‘t + @+ P) - cos(ayh + ¢ + tﬁ)]} +...
as 2=0(1)

B=2- ln(-:-) with  2=0(1) as (e—0). (4.22)

(4.23)
Here ¥ is a phase shift analogous to (¢) as explained below (4 15)
and rh is defined in analogy with & from (4.22). The immediate
conclusions from the formula in (4.23) are that (i) the deviation of
the solution from CJ-conditions is of order O(¢'/?) now, but that (i)
the resonance effects no longer appear at order O(¢) in the upstream
transonic layer but at order O(&%/?) only.

The above derivations, based on the methcd of characteristics,
are valid only as long as the solutions are shock-free and this is
generally true only for some finite time. Therefore, in order to test
the validity of the limit representation in (4.23) we present numerical
solutions of the burnout layer problem, using modern higher order
Godunov-type upwind techniques, in the next subsection.



A remark on the downstream matching of the burnout layer so-
lution with the burnt gas region is in order. In the burnout layer
solutions there is no degree of freedom in the backward traveling
mode amplitudes, $,W, to accomodate the cumulative influence of
the acoustic resonance. Thus, as 2 — +00, the second order per-
turbation, {/(?) diverges. This divergence, however, can be matched
to the behavior of the backward traveling mode amplitudes, S, W in
the burnt gas region at £ = 0, (Bdzil and Klein (1993)).

4.3 Numerical solutions of the burnout layer problem

Here we describe exemplary numerical solutions to equasions (4.16),
(4.17). We use a higher order MUSCL Godunov type upwind scheme,
(see e.g. van Leer (1979) or LeVeq (1990)), to solve the homogeneous
inviscid Burgers equation, V, — VV; = 0 and Strang-type operator
splitting to account for the right hand side in (4.16). The sample
results shown in Fig. 5 are based on the parameter set

Wo = Sp=1.0, a; = 2.0,
p = 0.625, B =02.

Figure 5 shows a series of spatial distributions of the forward
acoustic mode amplitude at different times, » = 0.25,7 = 1.5. In
both plots the solid line represents the initial data, which in tura
coincide with the CJ-ZND background sclution. As time evolvas, the
resonant source term generates oscillations around this background
profile (Fig. 5a) and later on there is shock formation as seen in
Fig. 5b. One common feature of both profiles is that the oscillations
become weaker and weaker towards large negative £. The deviations
from the CJ-ZND background solutior decay in this limit just as
predicted by the limit analysis of the characteristic solution in section
4.2. To quantitatively verify the scalings implied by (4.21) we have
computed the solution in the extended reion —20 < & < 30. Figure
6a shows the distribution of V in —20 < 2 < 5 at the time 7 =
1.5. Obviously the decay of the oscillations to the right as seen in
Fig.5 continues. Figure 6 shows a scaled deviation from the CJ.ZND
solution, V*, namely

Ve = (V - V)« [V/2, (4.25)

(4.24)

as a function of 2 at the same time. According to (4 21) this quan-
tity should be of order O(1) as £ -+ --00 and the plot verifies this



Fig. 5: Spatial profiles of the forward acoustic amplitude in the
burnout layer at times: a) n == 0.25, b) n = 1.5.



tendency. In fact V* even seems to decay due to shock dissipation.
Thus, for shock containing solutions the vanishing of the resonance
effects in the upstream direction appears to be at least as pronounced
as should be expected from the characteristic analysis.

8. Concluding Remarks

In this paper we have point2d out that for marginally stable near-
Chapman-Jouguet detonations there is an apparent contradiction be-
tween i) the standard radiation boundary condition for linear stabil.
ity analyses and ii) the resonant generation of forward acoustic per-
turbations in the back of the wave. We have identified a simplified
asymptotic equation systein that describes these weakly nonlinear
resonance effects and we defined a model problem that will allow
quantitative predictions and comparison with results from direct nu-
merical simulations in future work.

It turned out thai the proper formulation of farfield boundary
conditions in a linear perturbation analysis of the detonation struc-
ture can be derived from solving a simplified system describing the
resonance effects only in a so called burnout layer adjacent to the det-
onation structure. Formal solutions of the burnout layer equations
based on the method of characteristics as well as numerical solutions
of this burnout layer protlem show that the influence of acoustic
resonances decays as one leaves the burnout region upstream. A
complete analysis, to be presented in Bdzil and Klein (1993), shows
that this tendency continues and that at finite distances behind the
lead shock of the detonation the acoustic resonance effects appear
at no more than second order in the linear perturbation amplitude.
We conclude that the standard radiation condition is valid even for
near-CJ detonations.

Appendix A: Eigenvalue Analysis
Eigenvalues:
A" =u-g¢, a® =y, at =u+e, a® = u, (A1)

with ¢ = \/pv. Here a~,a% are associated with acoustic wave propa-
gation, a® with the advection of entropy perturbations and a® with
the advection of the chemical reaction progress variable. The asso-
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Fig. 6: a) Solution from Fig.5 at time n = 1.5 for large negative
2. b) Scaled deviation from the CJ-ZND background profile in the
burnout layer according to (4.25), supporting the scaling behavior
derived from a characteristic analysis as 2 —» —o0.



ciated right Eigenvectors are:

-v v -V 0
- _ -C o _ 0 + _ c o _ 0
r = ,Yp L= 0 L= 7,, ) r - 0 (A2)
0 0 0 1
and the left Eigenvectors are
- = 0, =1/2, 1/2yp, 0, ]
P = [ 1/v, 0, 1/9p, 0, )
*o={ 0, 1/2, 1/2vp, O, ] (43)
=1 0, 0 0, 1, ]

Appendix B: Fast Variable Averaging Symbols

Let s denote any of the fast variables, z,y, A from (3.11) and let
o = &3 be the related slow variable. Then the fast variable average
of a multiple scalea function f(s,0) is defined by

(f)o) = lim lim — /L}(Hh)f(s.a)ds.

Ac—0e—0 2A0 (e—Ac)

Notice the specific sequence of limits in this expression. Let fur-
ther g(z,y;€,n) with § = €z, n = €y, be some other multiple scales
function depending on all of the slow and fast variables. Then

L(n+an)
(9)=N2;¢,n) = lim lim — / e a(=,v:&,m) dy.

An—0€-0 2A1; Ji(n-An)

and an analogous definition holds for (g)(¥)(y; ¢, n).
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